4.5 Article

Electronic and optical properties of CdSe/ZnSe core/shell QDs within centered hydrogenic impurity and their tunability when subjected to an external electric field

Journal

PHYSICA B-CONDENSED MATTER
Volume 672, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.physb.2023.415458

Keywords

Semiconductor; Core/shell quantum dots; Binding energy; Stark effect; Diamagnetic susceptibility

Ask authors/readers for more resources

The electronic and optical properties of CdSe/ZnSe semiconductor core/shell quantum dots with hydrogenic donor impurity were investigated theoretically. The perturbation and variational methods were used to calculate the binding energy, photoionization cross-section, polarizability, and diamagnetic susceptibility of the excited impurity under various conditions. A significant stark shift in the binding energy was observed under the influence of an external electric field.
The electronic and optical properties of CdSe/ZnSe semiconductor core/shell quantum dots with hydrogenic donor impurity were investigated theoretically. The perturbation approach and variational method were used in calculations under Effective Mass Approximation. The considered structure is embedded in a variable polymer matrix. The binding energy (BE), photoionization cross-section, polarizability, and diamagnetic susceptibility of the excited impurity were calculated first according to the core/shell radius ratio and then under a significant external electric field and in the absence of an external electric field. A significant stark shift was observed in the BE relative to the embedded matrix element.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available