4.7 Article

Syntenic analysis of ACCase loci and target-site-resistance mutations in cyhalofop-butyl resistant Echinochloa crus-galli var. crus-galli in Japan

Journal

PEST MANAGEMENT SCIENCE
Volume -, Issue -, Pages -

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/ps.7789

Keywords

barnyardgrass; TSR; polyploid; allohexaploid

Ask authors/readers for more resources

This study identified suspected cyhalofop-butyl-resistant populations of a weed species in rice fields in Japan, characterized their herbicide response, and thoroughly analyzed their ACCase genes. The resistant lines showed resistance exclusively to ACCase-inhibiting herbicides, with target-site resistance mutations in the ACCase genes. The characterization of ACCase loci in this weed species provides a basis for further research on ACCase herbicide resistance.
BACKGROUND: Recently, suspected cyhalofop-butyl-resistant populations of allohexaploid weed Echinochloa crus-galli var. crus-galli were discovered in rice fields in Aichi Prefecture, Japan. Analyzing the target-site ACCase genes of cyhalofop-butyl helps understand the resistance mechanism. However, in E. crus-galli, the presence of multiple ACCase genes and the lack of detailed gene investigations have complicated the analysis of target-site genes. Therefore, in this study, we characterized the herbicide response of E. crus-galli lines and thoroughly characterized the ACCase genes, including the evaluation of gene mutations in the ACCase genes of each line.RESULT: Four suspected resistant lines collected from Aichi Prefecture showed varying degrees of resistance to cyhalofop-butyl and other FOP-class ACCase inhibitors but were sensitive to herbicides with other modes of action. Through genomic analysis, six ACCase loci were identified in the E. crus-galli genome. We renamed each gene based on its syntenic relationship with other ACCase genes in the Poaceae species. RNA-sequencing analysis revealed that all ACCase genes, except the pseudogenized copy ACCase2A, were transcribed at a similar level in the shoots of E. crus-galli. Mutations known to confer resistance to FOP-class herbicides, that is W1999C, W2027C/S and I2041N, were found in all resistant lines in either ACCase1A, ACCase1B or ACCase2C.CONCLUSION: In this study, we found that the E. crus-galli lines were resistant exclusively to ACCase-inhibiting herbicides, with a target-site resistance mutation in the ACCase gene. Characterization of ACCase loci in E. crus-galli provides a basis for further research on ACCase herbicide resistance in Echinochloa spp. (c) 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available