4.7 Article

Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 279, Issue -, Pages 402-408

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2015.05.057

Keywords

Co-pyrolysis; Co-gasification; Biomass; Coal; Reaction kinetics; Renewable energy

Funding

  1. Natural Science and Engineering Research Council of Canada

Ask authors/readers for more resources

Gasification of blends of biomass and coal can offer renewable fuels the scale and extent of deployment usually associated with fossil fuels. For significant penetration of renewables, however, co-utilization of significant quantities of biomass is required, which significantly impacts process performance. At a fundamental level, char reactivity affects many practical aspects of gasifier operation, and is complicated by the influence of blends of coal and biomass and their different behaviour during devolatilization. In this work, intrinsic gasification reaction kinetics of chars from biomass and coal mixtures with different proportions were studied: one set of chars produced separately and mixed prior to gasification; and another with chars produced from co-pyrolysis of biomass-coal blends. Lower specific and intrinsic rates were observed for the samples where the biomass and coal were pyrolyzed together than when they were pyrolyzed separately, suggesting some interaction during devolatilization that affects reactivity behaviour. XRD results showed that the catalytically-active calcium species in the biomass interacted with the aluminosilicate species in the coal mineral matter to form Ca2Al2SiO7 (gehlenite) crystals, which are catalytically inert. The conversion of catalytically-active Ca to catalytically-inactive Ca may have led to lower reactivity of co-pyrolyzed mixtures, highlighting the importance of understanding the type and nature of often catalytically-active species when investigating the gasification behaviour of blends of coal and biomass materials. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available