4.5 Article

A Dicarboxylate Transporter, LjALMT4, Mainly Expressed in Nodules of Lotus japonicus

Journal

MOLECULAR PLANT-MICROBE INTERACTIONS
Volume 29, Issue 7, Pages 584-592

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI-04-16-0071-R

Keywords

-

Funding

  1. Japan Society for the Promotion of Science [24880020, 23780066]
  2. Ministry of Education, Culture, Sports, Science and Technology (MEXT) as part of the Joint Research Program implemented at the Institute of Plant Science and Resources of Okayama University
  3. Japan Advanced Plant Science Research Network
  4. Research Institute for Sustainable Humanosphere (RISH), Kyoto University
  5. Grants-in-Aid for Scientific Research [23780066, 24880020, 15K18595] Funding Source: KAKEN

Ask authors/readers for more resources

Legume plants can establish symbiosis with soil bacteria called rhizobia to obtain nitrogen as a nutrient directly from atmospheric N-2 via symbiotic nitrogen fixation. Legumes and rhizobia form nodules, symbiotic organs in which fixed-nitrogen and photosynthetic products are exchanged between rhizobia and plant cells. The photosynthetic products supplied to rhizobia are thought to be dicarboxylates but little is known about the movement of dicarboxylates in the nodules. In terms of dicarboxylate transporters, an aluminum-activated malate transporter (ALMT) family is a strong candidate responsible for the membrane transport of carboxylates in nodules. Among the seven ALMT genes in the Lotus japonicus genome, only one, LjALMT4, shows a high expression in the nodules. LjALMT4 showed transport activity in a Xenopus oocyte system, with LjALMT4 mediating the efflux of dicarboxylates including malate, succinate, and fumarate, but not tricarboxylates such as citrate. LjALMT4 also mediated the influx of several inorganic anions. Organ-specific gene expression analysis showed LjALMT4 mRNA mainly in the parenchyma cells of nodule vascular bundles. These results suggest that LjALMT4 may not be involved in the direct supply of dicarboxylates to rhizobia in infected cells but is responsible for supplying malate as well as several anions necessary for symbiotic nitrogen fixation, via nodule vasculatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available