4.6 Article

High-sensitivity fiber optic temperature sensor based on CTFBG-FPI and Vernier effect

Journal

OPTICS LETTERS
Volume 48, Issue 15, Pages 3845-3848

Publisher

Optica Publishing Group
DOI: 10.1364/OL.496463

Keywords

-

Categories

Ask authors/readers for more resources

This paper proposes and demonstrates a novel high-sensitivity temperature sensor based on a chirped thin-core fiber Bragg grating Fabry-Perot interferometer (CTFBG-FPI) and the Vernier effect. Two CTFBG-FPIs with different interferometric cavity lengths are inscribed inside a thin-core fiber using femtosecond laser direct writing technology to form a Vernier effect system. The measured temperature sensitivity of this sensor is -1.084 nm/degrees C in a range of 40-90 degrees C. This sensor is expected to play a crucial role in precision temperature measurement applications.
A novel high-sensitivity temperature sensor based on a chirped thin-core fiber Bragg grating Fabry-Perot interferometer (CTFBG-FPI) and the Vernier effect is proposed and demonstrated. With femtosecond laser direct writing technology, two CTFBG-FPIs with different interferometric cavity lengths are inscribed inside a thin-core fiber to form a Vernier effect system. The two FPIs consist of two pairs of CTFBGs with a full width at half maximum (FWHM) of 66.5 nm staggered in parallel. The interferometric cavity lengths of the two FPIs were designed to be 2 mm and 1.98 mm as the reference arm and sensing arm of the sensor, respectively. The temperature sensitivity of this sensor was measured to be -1.084 nm/degrees C in a range of 40-90 degrees C. This sensor is expected to play a crucial role in precision temperature measurement applications. (C) 2023 Optica Publishing Group

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available