4.7 Article

Functional C-TERMINALLY ENCODED PEPTIDE (CEP) plant hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis

Journal

MOLECULAR PLANT PATHOLOGY
Volume 17, Issue 8, Pages 1265-1275

Publisher

WILEY
DOI: 10.1111/mpp.12402

Keywords

effector; evolution; plant-parasitic nematode; plant peptide hormone

Categories

Funding

  1. Biotechnology and Biological Sciences Research Council (BBSRC)
  2. James Hutton Institute through a PhD studentship
  3. Scottish Government Rural and Environment Science and Analytical Services Division
  4. BBSRC [BB/M014207/1]
  5. Biotechnology and Biological Sciences Research Council [BB/M014207/1, 959589] Funding Source: researchfish
  6. BBSRC [BB/M014207/1] Funding Source: UKRI

Ask authors/readers for more resources

Sedentary plant-parasitic nematodes (PPNs) induce and maintain an intimate relationship with their host, stimulating cells adjacent to root vascular tissue to re-differentiate into unique and metabolically active feeding sites'. The interaction between PPNs and their host is mediated by nematode effectors. We describe the discovery of a large and diverse family of effector genes, encoding C-TERMINALLY ENCODED PEPTIDE (CEP) plant hormone mimics (RrCEPs), in the syncytia-forming plant parasite Rotylenchulus reniformis. The particular attributes of RrCEPs distinguish them from all other CEPs, regardless of origin. Together with the distant phylogenetic relationship of R. reniformis to the only other CEP-encoding nematode genus identified to date (Meloidogyne), this suggests that CEPs probably evolved de novo in R. reniformis. We have characterized the first member of this large gene family (RrCEP1), demonstrating its significant up-regulation during the plant-nematode interaction and expression in the effector-producing pharyngeal gland cell. All internal CEP domains of multi-domain RrCEPs are followed by di-basic residues, suggesting a mechanism for cleavage. A synthetic peptide corresponding to RrCEP1 domain 1 is biologically active and capable of up-regulating plant nitrate transporter (AtNRT2.1) expression, whilst simultaneously reducing primary root elongation. When a non-CEP-containing, syncytia-forming PPN species (Heterodera schachtii) infects Arabidopsis in a CEP-rich environment, a smaller feeding site is produced. We hypothesize that CEPs of R. reniformis represent a two-fold adaptation to sustained biotrophy in this species: (i) increasing host nitrate uptake, whilst (ii) limiting the size of the syncytial feeding site produced.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available