4.5 Article

Control and stabilization of Kerr cavity solitons and breathers driven by chirped optical pulses

Journal

OPTICS COMMUNICATIONS
Volume 546, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.optcom.2023.129773

Keywords

Temporal solitons; Optical frequency combs; Kerr effect; Dissipative structures

Categories

Ask authors/readers for more resources

The impact of chirped driving fields on Kerr cavity breathers and solitons is investigated, and it is found that synchronous phase and amplitude modulation of the pumping field can be used to control soliton dynamics. The use of a phase-modulated super-Gaussian pump is shown to stabilize the oscillations of breathing solitons and generate prescribed temporal intra-cavity patterns. These findings have applications in deterministic generation of optical frequency soliton combs, optical tweezers, and all-optical manipulation of light pulses.
We investigate the impact of chirped driving fields on the dynamics and generation of Kerr cavity breathers and solitons. Synchronous phase and amplitude modulation of the pumping field can be exploited in order to control soliton dynamics. Here we show that using a phase-modulated super-Gaussian pump permits to stabilize the oscillations of breathing solitons. Moreover, our scheme permits to obtain new dynamical attractors, with a prescribed temporal intra-cavity pattern. Straightforward applications are the deterministic generation of optical frequency soliton combs, optical tweezers, and more generally, all-optical manipulation of light pulses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available