4.6 Article

Structural and optical properties of sol-gel synthesized TiO2 nanocrystals: Effect of Ni and Cr (co)doping

Journal

OPTICAL MATERIALS
Volume 143, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.optmat.2023.114203

Keywords

TiO2; Metal doping; Co-doping; Band-gap energy; Photoluminescence

Ask authors/readers for more resources

Nickel and chromium metal ions have been used to extend the light absorption range of titanium dioxide nanocrystals by doping and co-doping them. Various analysis techniques were employed to study the modified materials, revealing that the modified catalyst primarily contains the anatase polymorph. The incorporation of transition metal ions in the TiO2 nanocrystals resulted in a decrease in the band gap width and a decrease in photoluminescence intensity.
Nickel and chromium metal ions have been utilized to dope and co-dope titanium dioxide nanocrystals, thereby broadening the light absorption range of titania into the visible light spectrum. The doped and co-doped TiO2 nanocrystals were prepared using sol-gel techniques, with a varied doping concentration that extended from 0.25 to 10.0 wt%.These modified materials underwent comprehensive analysis using standard analytical tools such as X-ray diffraction, Raman spectroscopy, BET surface area measurement, Fourier transform infrared spectroscopy, UV-vis diffuse reflectance spectroscopy, and fluorescence spectroscopy. Powder XRD technique reveals that the modified catalyst majorly contains the anatase polymorph with the transition metal ion either substituting Ti or located as interstitials in the lattice of TiO2. Raman and UV-Vis absorption spectra of the doped and codoped catalyst a show & lambda;max shift towards longer wavelength when in the metal ion concentration is increased from 0.25 to 10 wt%. FTIR patterns show the stretching and vibration patterns of hydroxyl radicals present in the nano-crystals. The BET surface areas of the doped and codoped TiO2 nanocrystals have substantially higher surface areas compared with that of the undoped TiO2. Electronic structural studies of the TiO2, (Ti,Cr)O2, (Ti,Ni)O2, and (Ti,Ni,Cr)O2 crystals using density functional theory indicated a reduction in the band gap width (Eg) of pure TiO2 when doped with transition metals. Specifically, the indirect bandgap values for Ni(10%), Cr(10%) and NiCr(5% + 5%) doping were 2.96, 2.83, and 2.7 eV, respectively. Furthermore, the photoluminescence intensity substantially decreased with the incorporation of transition metal ions in the TiO2 nanocrystals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available