4.7 Article

A novel intelligent collision avoidance algorithm based on deep reinforcement learning approach for USV

Journal

OCEAN ENGINEERING
Volume 287, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2023.115649

Keywords

Unmanned surface vehicles; Deep reinforcement learning; Autonomous collision avoidance; Artificial intelligence

Ask authors/readers for more resources

This paper introduces a robust approach employing deep reinforcement learning theory to enhance the efficiency of unmanned surface vehicles collision avoidance. The paper studies the restrictions on USV maneuverability and international regulations for preventing collisions at sea, and proposes improved methodologies, as well as novel techniques such as dynamic area restriction and USV state clipping, resulting in highly efficient collision avoidance decisions.
Enhancing the efficiency of unmanned surface vehicles (USVs) collision avoidance can yield a significant impact, as it can result in safer navigation and lower energy consumption. This paper introduces a robust approach employing deep reinforcement learning theory to facilitate informed collision avoidance decisions within intricate maritime environments. The restrictions on USV maneuverability and international regulations for preventing collisions at sea are studied and quantified, particularly focusing on the shape and size changes of the ship's domain caused by USV speed. Based on the deep Q network, an improved methodology is designed, incorporating a noisy network, prioritized experience replay, dueling neural network architecture, and double Q learning, resulting in a highly efficient sampling, exploration, and learning process. To curtail computational expenses associated with USVs, a novel dynamic area restriction technique is proposed. Furthermore, an innovative USV state clipping method is introduced to mitigate training complexities. By utilizing the Unity platform, a virtual environment characterized by complexity and stochasticity is constructed for training and testing the collision avoidance of USVs This novel approach surpasses the performance of the pre-improvement algorithm across multiple collision avoidance effectiveness indicators and performance metrics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available