4.7 Article

Heteroatom-doped graphene-like carbon films prepared by chemical vapour deposition for bifacial dye-sensitized solar cells

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 267, Issue -, Pages 289-296

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2015.01.028

Keywords

Doped graphene-like carbon films; Chemical vapour deposition; Bifacial dye-sensitized solar cells

Funding

  1. National Natural Science Foundation of China [21106184, 21322609, 11274362]
  2. Science Foundation Research Funds [QZDX-2014-01]

Ask authors/readers for more resources

Bifacial dye-sensitized solar cells (DSSCs) with the ability to utilize incidental light from both front- and rear-sides have drawn massive attention from researchers in recent years. Herein, nitrogen (N)-doped, sulphur (S)-doped and nitrogen/sulphur dual-doped transparent graphene-like carbon films (GFs) were synthesized by chemical vapour deposition (CVD) and confirmed by transmission electron microscopy (TEM), UV-Vis transmitted spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The doped GFs show good performance as counter electrodes (CEs) for fabrication of bifacial DSSCs. The bifacial DSSCs with high transparent N-doped, S-doped and NIS dual-doped GFs as CEs exhibit dramatically enhanced power conversion efficiency (PCE) of 3.74%, 3.86% and 4.22% under front-side illumination compared to that of pristine graphene as CEs. More importantly, under rear-side illumination the PCE of bifacial DSSCs with N-doped, S-doped and N/S dual-doped GFs as CEs can also reach 3.07%, 3.19% and 3.45%, suggesting that the doped GFs have great potential applications in fabricating bifacial DSSCs with high performance. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available