4.7 Article

Theoretical limits on the speed of learning inverse models explain the rate of adaptation in arm reaching tasks

Journal

NEURAL NETWORKS
Volume 170, Issue -, Pages 376-389

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neunet.2023.10.049

Keywords

Motor learning; Inverse models; Gradient descent; Isometric tasks

Ask authors/readers for more resources

Inverse models are essential for human motor learning as they map desired actions to motor commands. The shape of the error surface and the distribution of targets in a task play a crucial role in determining the speed of learning.
An essential aspect of human motor learning is the formation of inverse models, which map desired actions to motor commands. Inverse models can be learned by adjusting parameters in neural circuits to minimize errors in the performance of motor tasks through gradient descent. However, the theory of gradient descent establishes limits on the learning speed. Specifically, the eigenvalues of the Hessian of the error surface around a minimum determine the maximum speed of learning in a task. Here, we use this theoretical framework to analyze the speed of learning in different inverse model learning architectures in a set of isometric arm-reaching tasks. We show theoretically that, in these tasks, the error surface and, thus the speed of learning, are determined by the shapes of the force manipulability ellipsoid of the arm and the distribution of targets in the task. In particular, rounder manipulability ellipsoids generate a rounder error surface, allowing for faster learning of the inverse model. Rounder target distributions have a similar effect. We tested these predictions experimentally in a quasiisometric reaching task with a visuomotor transformation. The experimental results were consistent with our theoretical predictions. Furthermore, our analysis accounts for the speed of learning in previous experiments with incompatible and compatible virtual surgery tasks, and with visuomotor rotation tasks with different numbers of targets. By identifying aspects of a task that influence the speed of learning, our results provide theoretical principles for the design of motor tasks that allow for faster learning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available