4.8 Article

Broken symmetries and excitation spectra of interacting electrons in partially filled Landau levels

Journal

NATURE PHYSICS
Volume -, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41567-023-02126-z

Keywords

-

Ask authors/readers for more resources

We demonstrate a non-invasive spectroscopic technique with a scanning tunnelling microscope, which allows us to investigate the broken-symmetry states and excitation spectrum of the partially filled zeroth Landau level in graphene. Our experimental approach quantifies the interacting phase diagram of the zeroth Landau level and provides insights into the repulsive interactions underlying the fractional quantum states.
Interacting electrons in flat bands give rise to a variety of quantum phases. One fundamental aspect of such states is the ordering of the various flavours-such as spin or valley-that the electrons can possess and the excitation spectrum of the broken-symmetry states that they form. These properties cannot be probed directly with electrical transport measurements. The zeroth Landau level of monolayer graphene with fourfold spin-valley degeneracy is a model system for such investigations, but the nature of its broken-symmetry states-particularly at partial fillings-is still not understood. Here we demonstrate a non-invasive spectroscopic technique with a scanning tunnelling microscope and use it to perform measurements of the valley polarization of the electronic wavefunctions and their excitation spectrum in the partially filled zeroth Landau level of graphene. We can extract information such as the strength of the Haldane pseudopotentials that characterize the repulsive interactions underlying the fractional quantum states. Our experiments also demonstrate that fractional quantum Hall phases are built upon broken-symmetry states that persist at partial filling. Our experimental approach quantifies the valley phase diagram of the partially filled Landau level as a model flat-band platform, which is applicable to other graphene-based electronic systems. A scanning tunnelling microscopy technique that minimally perturbs the sample quantifies the interacting phase diagram of the zeroth Landau level in monolayer graphene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available