4.8 Article

Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome

Journal

NATURE METHODS
Volume 20, Issue 10, Pages 1530-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41592-023-02007-6

Keywords

-

Ask authors/readers for more resources

Single-cell proteomics by mass spectrometry is a powerful method for studying biological heterogeneity, and single-cell Deep Visual Proteomics (scDVP) is a technology that integrates high-content imaging, laser microdissection, and multiplexed mass spectrometry to analyze the spatial proteome of tissues. It can identify thousands of proteins and reveal differential regulation in spatially distinct regions.
Single-cell proteomics by mass spectrometry is emerging as a powerful and unbiased method for the characterization of biological heterogeneity. So far, it has been limited to cultured cells, whereas an expansion of the method to complex tissues would greatly enhance biological insights. Here we describe single-cell Deep Visual Proteomics (scDVP), a technology that integrates high-content imaging, laser microdissection and multiplexed mass spectrometry. scDVP resolves the context-dependent, spatial proteome of murine hepatocytes at a current depth of 1,700 proteins from a cell slice. Half of the proteome was differentially regulated in a spatial manner, with protein levels changing dramatically in proximity to the central vein. We applied machine learning to proteome classes and images, which subsequently inferred the spatial proteome from imaging data alone. scDVP is applicable to healthy and diseased tissues and complements other spatial proteomics and spatial omics technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available