4.8 Article

Lis1 slows force-induced detachment of cytoplasmic dynein from microtubules

Journal

NATURE CHEMICAL BIOLOGY
Volume -, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41589-023-01464-6

Keywords

-

Ask authors/readers for more resources

This study reveals that the binding of Lis1 to the AAA+ ring of dynein slows down its motility without affecting force generation. Additionally, Lis1 binding to the stalk of dynein prolongs its stalls and reduces the asymmetry in force-induced detachment from microtubules.
Lis1 is a key cofactor for the assembly of active cytoplasmic dynein complexes that transport cargo along microtubules. Lis1 binds to the AAA+ ring and stalk of dynein and slows dynein motility, but the underlying mechanism has remained unclear. Using single-molecule imaging and optical trapping assays, we investigated how Lis1 binding affects the motility and force generation of yeast dynein in vitro. We showed that Lis1 slows motility by binding to the AAA+ ring of dynein, not by serving as a roadblock or tethering dynein to microtubules. Lis1 binding also does not affect force generation, but it induces prolonged stalls and reduces the asymmetry in the force-induced detachment of dynein from microtubules. The mutagenesis of the Lis1-binding sites on the dynein stalk partially recovers this asymmetry but does not restore dynein velocity. These results suggest that Lis1-stalk interaction slows the detachment of dynein from microtubules by interfering with the stalk sliding mechanism. Lis1 binding to the AAA+ ring of dynein increases the microtubule affinity and slows dynein motility. Lis1 binding to the stalk of dynein restricts the sliding of the coiled coils and slows detachment from microtubules under load.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available