4.7 Article

Ternary nanocomposite potentiates the lysophosphatidic acid effect on human osteoblast (MG63) maturation

Journal

NANOMEDICINE
Volume 18, Issue 21, Pages 1459-1475

Publisher

FUTURE MEDICINE LTD
DOI: 10.2217/nnm-2023-0117

Keywords

bone regeneration; drug delivery; osteoblast maturation; reduced graphene; titanium dioxide nanoparticles

Ask authors/readers for more resources

The study investigated the potential of ternary nanocomposite (TNC) in supporting osteoblast maturation. The results showed that TNC could enhance osteoblast maturation and had potential applications in bone regeneration.
Aim: This study aimed to investigate the potential of ternary nanocomposite (TNC) to support MG63 osteoblast maturation to EB1089-(3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP) cotreatment. Materials & methods: Binary (P25/reduced graphene oxide [rGO]) nanocomposite was prepared, and silver (Ag) nanoparticles were loaded onto the surface to form TNC (P25/rGO/Ag). The influence of TNC on proliferation, alkaline phosphatase activity and osteogenic gene expression was evaluated in a model of osteoblast maturation wherein MG63 were costimulated with EB1089 and FHBP. Results: TNC had no cytotoxic effect onMG63. The addition of TNC to EB1089-FHBP cotreatment enhanced the maturation of MG63, as supported by the greater alkaline phosphatase activity and OPN and OCN gene expression. Conclusion: TNC could serve as a promising carrier for FHBP, opening up possibilities for its application in bone regeneration. Plain language summary: Nanoparticles (NPs) are often used in medicine because they have certain benefits over traditional drugs, such as increased delivery. Multiple NPs can be combined into hybrid NPs called nanocomplexes, which can have many positive effects. One application of nanomedicine is to encourage the repair of certain body tissues such as bones. Encouraging stem cells to differentiate into bone cells and immature bone cells to mature is key in this process. This study made a ternary nanocomplex (TNC), meaning it was comprised of three NPs. This TNC was designed to deliver a drug called (3S)1-fluoro3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP), which has been shown to encourage the maturation and development of osteoblasts, a type of bone cell. The TNC was made up of silver NPs, which can kill bacteria; reduced graphene oxide, which enhances the production of bone cells; and titanium dioxide, which has shown effectiveness in wound healing and mixed results in bone tissue regeneration. This TNC was tested on a cell line that comes from a type of bone cancer called MG63. The TNC was found to not be toxic to these cells. TNC incorporation into FHBP treatment enhanced the maturation of MG63. This suggests that these TNCs could be an effective treatment to encourage bone repair following joint replacement surgeries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available