4.8 Review

Designing metal sulfide-based cathodes and separators for suppressing polysulfide shuttling in lithium-sulfur batteries

Journal

NANO RESEARCH
Volume -, Issue -, Pages -

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-023-6227-4

Keywords

lithium-sulfur batteries; metal sulfides; polysulfide shuttling; sulfur hosts; separator coating layers

Ask authors/readers for more resources

This review systematically summarizes the recent progress on the utilization of metal sulfide for suppressing polysulfide shuttling in Li-S batteries, with a special focus on sulfur hosts and functional separators. The critical roles of metal sulfides in realizing high-performing Li-S batteries have been comprehensively discussed by correlating the materials' structure and electrochemical performances. Moreover, the remaining issues/challenges and future perspectives are highlighted.
Lithium-sulfur (Li-S) batteries, known for their high energy density, are attracting extensive research interest as a promising next-generation energy storage technology. However, their widespread use has been hampered by certain issues, including the dissolution and migration of polysulfides, along with sluggish redox kinetics. Metal sulfides present a promising solution to these obstacles regarding their high electrical conductivity, strong chemical adsorption with polysulfides, and remarkable electrocatalytic capabilities for polysulfide conversion. In this review, the recent progress on the utilization of metal sulfide for suppressing polysulfide shuttling in Li-S batteries is systematically summarized, with a special focus on sulfur hosts and functional separators. The critical roles of metal sulfides in realizing high-performing Li-S batteries have been comprehensively discussed by correlating the materials' structure and electrochemical performances. Moreover, the remaining issues/challenges and future perspectives are highlighted. By offering a detailed understanding of the crucial roles of metal sulfides, this review dedicates to contributing valuable knowledge for the pursuit of high-efficiency Li-S batteries based on metal sulfides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available