4.8 Article

Thermo-Magnetostrictive Effect for Driving Antiferromagnetic TwoDimensional Material Resonators

Journal

NANO LETTERS
Volume 23, Issue 15, Pages 6973-6978

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.3c01610

Keywords

nanomechanics; magnetic materials; phase transitions; two-dimensional materials

Ask authors/readers for more resources

Magnetostrictive coupling has become a sensitive method for studying magnetism in 2D materials by mechanical means. In this study, we optothermally modulate the magnetization in antiferromagnetic 2D material membranes to induce a high-frequency magnetostrictive driving force. The thermo-magnetostrictive effect near the critical temperature of magnetostrictive 2D materials provides a route for more efficient actuation of nano-magnetomechanical devices and studying the coupling among magnetic, mechanical, and thermodynamic degrees of freedom.
Magnetostrictive coupling has recently attracted interest as a sensitive method for studying magnetism in twodimensional (2D) materials by mechanical means. However, its application in high-frequency magnetic actuators and transducers requires rapid modulation of the magnetic order, which is difficult to achieve with external magnets, especially when dealing with antiferromagnets. Here, we optothermally modulate the magnetization in antiferromagnetic 2D material membranes of metal phosphor trisulfides (MPS3), to induce a large high-frequency magnetostrictive driving force. From the analysis of the temperature-dependent resonance amplitude, we provide evidence that the force is due to a thermo-magnetostrictive effect, which significantly increases near the Nee ' l temperature, due to the strong temperature dependence of the magnetization. By studying its angle dependence, we find the effect is observed to follow anisotropic magnetostriction of the crystal lattice. The results show that the thermo-magnetostrictive effect results in a strongly enhanced thermal expansion force near the critical temperature of magnetostrictive 2D materials, which can enable more efficient actuation of nano-magnetomechanical devices and can also provide a route for studying the high-frequency coupling among magnetic, mechanical, and thermodynamic degrees of freedom down to the 2D limit. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available