4.7 Article

QUIJOTE scientific results - X. Spatial variations of Anomalous Microwave Emission along the Galactic plane

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 526, Issue 1, Pages 1343-1366

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stad2545

Keywords

radiation mechanisms:general; ISM: general; Galaxy: general; diffuse radiation; radio continuum: ISM

Ask authors/readers for more resources

This study investigates the Anomalous Microwave Emission (AME) in the Galactic plane using QUIJOTE-MFI data. The exclusion of QUIJOTE-MFI data leads to an underestimation of the AME signal. The study finds correlations between the width and peak frequency of AME with certain ISM properties.
Anomalous microwave emission (AME) is an important emission component between 10 and 60 GHz that is not yet fully understood. It seems to be ubiquitous in our Galaxy and is observed at a broad range of angular scales. Here we use the new QUIJOTE-MFI wide survey data at 11, 13, 17, and 19 GHz to constrain the AME in the Galactic plane (|b| < 10(degrees)) on degree scales. We built the spectral energy distribution between 0.408 and 3000 GHz for each of the 5309 0.9(degrees) pixels in the Galactic plane, and fitted a parametric model by considering five emission components: synchrotron, free-free, AME, thermal dust and CMB anisotropies. We show that not including QUIJOTE-MFI data points leads to the underestimation (up to 50 per cent) of the AME signal in favour of free-free emission. The parameters describing these components are then intercompared, looking for relations that help to understand AME physical processes. We find median values for the AME width, W-AME, and for its peak frequency, nu(AME), respectively of 0.560(-0.050)(+0.059) and 20.7(-1.9)(+2.0) GHz, slightly in tension with current theoretical models. We find spatial variations throughout the Galactic plane for nu AME, but only with reduced statistical significance. We report correlations of AME parameters with certain ISM properties, such as that between the AME emissivity (which shows variations with the Galactic longitude) and the interstellar radiation field, and that between the AME peak frequency and dust temperature. Finally, we discuss the implications of our results on the possible molecules responsible for AME.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available