4.7 Article

Large-scale structures in the stellar wind of fast-rotating stars spawned by the presence of Earth-like planets

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 525, Issue 1, Pages 286-296

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stad2148

Keywords

MHD; shock waves; methods: numerical; exoplanets; stars: winds

Ask authors/readers for more resources

Forming planets around young, fast-rotating solar-like stars are exposed to intense radiation and magnetized stellar winds. This interaction leads to the formation of observable structures, such as bow shocks and induced magnetospheres. Using numerical simulations, this study investigates the interaction between stellar winds and Earth-like, unmagnetized planetary obstacles.
Forming planets around young, fast-rotating solar-like stars are exposed to an intense X-ray/extreme ultraviolet radiation field and strongly magnetized stellar winds, as a consequence of the high magnetic activity of these stars. Under these conditions, Earth-like exoplanets may experience a rapid loss of their primordial hydrogen atmospheres, resulting in atmosphereless rocky obstacles for the stellar winds. The interaction of stellar winds with those planets leads to the formation of potentially observable structures due to the formation of large-scale magnetic field and density disturbances in the vicinity of these planets, such as bow shocks, induced magnetospheres, and comet-like tails. In this work, we study the interaction between the stellar winds of active, fast-rotating solar-like stars in the superfast-magnetosonic regime with Earth-like, unmagnetized, tenuous atmosphere, planetary obstacles through numerical three-dimensional simulations using the pluto magnetohydrodynamical code. The properties of AB Doradus, a nearby young star with a small rotation period (0.51 d) and a strong flaring activity, have been used to parametrize this early wind state. Bow shock and induced magnetosphere formation are characterized through the Alfvenic Mach number M-A of the wind, for different stellar wind configurations. Large bow shocks, up to an extension of & SIM;7.0 planetary radii, are found for low-M-A winds. The general increase of density, temperature, and magnetic field in these large-scale structures formed around planets may result in potentially detectable spectral signatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available