4.5 Article

Engineering of the human vessel wall with hair follicle stem cells in vitro

Journal

MOLECULAR MEDICINE REPORTS
Volume 15, Issue 1, Pages 417-422

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/mmr.2016.6013

Keywords

vascular tissue engineering; hair follicle stem cells; smooth muscle cells

Funding

  1. National Natural Science Foundation of China [81000842]

Ask authors/readers for more resources

Hair follicle stem cells (HFSCs) are increasingly used as a stem cell paradigm in vascular tissue engineering due to the fact that they are a rich source of easily accessible multipotent adult stem cells. Promising results have been demonstrated with small diameter (less than 6 mm) tissue engineered blood vessels under low blood pressure, however engineering large vessels (>6 mm in diameter) remains a challenge due to the fact it demands a higher number of seed cells and higher quality biomechanical properties. The aim of the current study was to engineer a large vessel (6 mm in diameter) with differentiated smooth muscle cells (SMCs) induced from human (h)HFSCs using transforming growth factor-B and platelet-derived growth factor BB in combination with low-serum culture medium. The cells were seeded onto polyglycolic acid and then wrapped around a silicone tube and further cultured in vitro. A round vessel wall was formed subsequent to 8 weeks of culture. Histological examination indicated that layers of smooth muscle-like cells and collagenous fibres were oriented in the induced group. In contrast, disorganised cells and collagenous fibres were apparent in the undifferentiated group. The approach developed in the current study demonstrated potential for constructing large muscular vessels with differentiated SMCs induced from hHFSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available