4.6 Article

In Situ Synthesis of Doped Bio-Graphenes as Effective Metal-Free Catalysts in Removal of Antibiotics: Effect of Natural Precursor on Doping, Morphology, and Catalytic Activity

Journal

MOLECULES
Volume 28, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/molecules28207212

Keywords

bio-graphene; natural gum; metal-free catalyst; antibiotic

Ask authors/readers for more resources

Green graphenes synthesized using natural precursors show good catalytic performance in antibiotic removal, with chitosan-derived graphene exhibiting the best performance.
Wastewater contaminated with antibiotics is a major environmental challenge. The oxidation process is one of the most common and effective ways to remove these pollutants. The use of metal-free, green, and inexpensive catalysts can be a good alternative to metal-containing photocatalysts in environmental applications. We developed here the green synthesis of bio-graphenes by using natural precursors (Xanthan, Chitosan, Boswellia, Tragacanth). The use of these precursors can act as templates to create 3D doped graphene structures with special morphology. Also, this method is a simple method for in situ synthesis of doped graphenes. The elements present in the natural biopolymers (N) and other elements in the natural composition (P, S) are easily placed in the graphene structure and improve the catalytic activity due to the structural defects, surface charges, increased electron transfers, and high absorption. The results have shown that the hollow cubic Chitosan-derived graphene has shown the best performance due to the doping of N, S, and P. The Boswellia-derived graphene shows the highest surface area but a lower catalytic performance, which indicates the more effective role of doping in the catalytic activity. In this mechanism, O2 dissolved in water absorbs onto the positively charged C adjacent to N dopants to create oxygenated radicals, which enables the degradation of antibiotic molecules. Light irradiation increases the amount of radicals and rate of antibiotic removal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available