4.6 Article

Walnut Kernel Oil and Defatted Extracts Enhance Mesenchymal Stem Cell Stemness and Delay Senescence

Journal

MOLECULES
Volume 28, Issue 17, Pages -

Publisher

MDPI
DOI: 10.3390/molecules28176281

Keywords

walnut kernel extracts; mesenchymal stem cells; stemness; senescence; antioxidant

Ask authors/readers for more resources

This study investigated the effects of walnut kernel oil (WKO) and defatted (WKD) extracts on the stemness and senescence of bone marrow-derived mesenchymal stem cells (BM-MSCs). The results showed that WKO and WKD extracts enhanced the stemness of BM-MSCs and reduced senescence markers. These extracts have the potential to improve the therapeutic efficacy of MSCs.
Decreased stemness and increased cellular senescence impair the ability of mesenchymal stem cells (MSCs) to renew themselves, change into different cell types, and contribute to regenerative medicine. There is an urgent need to discover new compounds that can boost MSCs' stemness and delay senescence. Therefore, this study aimed to investigate the impact of walnut kernel oil (WKO) and defatted (WKD) extracts on bone marrow (BM)-MSC stemness and senescence. Premature senescence and inflammation were induced in BM-MSCs using H2O2 and LPS, respectively. Phytochemical constituents of WKO and WKD extracts were detected by HPLC. The stemness (proliferation and migration), senescence-related markers (p53, p21, SIRT1, and AMPK), oxidative stress/antioxidant markers, inflammatory cytokines, and cell cycle of BM-MSCs were measured by MTT assay, qPCR, ELISA, and flow cytometry. WKO and WKD extracts improved rat BM-MSC stemness, as evidenced by (1) increased cell viability, (2) decreased apoptosis (low levels of Bax and caspase3 and high levels of Bcl2), (3) upregulated MMP9 and downregulated TIMP1 expression, and (4) cell cycle arrest in the G0/G1 phase and declined cell number in the S and G2/M phases. Additionally, WKO and WKD extracts reduced rat BM-MSC senescence, as indicated by (1) decreased p53 and p21 expression, (2) upregulated expression and levels of SIRT1 and AMPK, (3) reduced levels of ROS and improved antioxidant activity (higher activity of CAT, SOD, and GPx and upregulated expression of NrF2 and HO-1), and (4) declined levels of TNF & alpha;, IL1 & beta;, and NF-& kappa;B. When compared to the WKO extract, the WKD extract had a greater impact on the induction of stemness and reduction of senescence of BM-MSCs due to its stronger antioxidant activity, which could be attributed to its higher levels of flavonoids and phenolic compounds, as detected by HPLC analysis. WKO and WKD extracts enhance rat BM-MSC stemness and protect them from senescence, suggesting their potential use as enhancers to increase MSCs' therapeutic efficacy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available