4.6 Article

Experimental and Theoretical Biological Probing of Schiff Bases as Esterase Inhibitors: Structural, Spectral and Molecular Insights

Journal

MOLECULES
Volume 28, Issue 15, Pages -

Publisher

MDPI
DOI: 10.3390/molecules28155703

Keywords

Schiff base; molecular docking; crystal structure; density functional theory; Hirshfeld surface analysis

Ask authors/readers for more resources

The present study aimed to assess the in vitro and in silico potential of two Schiff bases synthesized using a reported method. The structures of the compounds were determined using spectroscopic techniques and single-crystal XRD. Molecular docking studies and in vitro assessment suggested that these compounds could act as enzyme inhibitors against acetylcholine esterase (AChE) and butyrylcholine esterase (BChE).
The present study was designed to evaluate the in vitro and in silico potential of the Schiff bases (Z)-4-ethoxy-N-((5-nitrothiophen-2-yl)methylene)benzenamine (1) and (Z)-2,4-diiodo-6-((2-methyl-3-nitrophenylimino)methyl)phenol (2). These Schiff bases were synthesized according to a reported method using ethanol as a solvent, and each reaction was monitored on a TLC until completion of the reaction. The structures of both compounds were elucidated using spectroscopic techniques such as UV-Vis, FTIR, H-1 NMR and C-13 NMR. Molecular structure was determined using single-crystal XRD, which revealed that compounds 1 and 2 were monoclinic and triclinic, respectively. Hirshfeld surface analysis (HS) and 2D fingerprint plots were used to determine the intermolecular interactions along the contact contribution in the crystalline molecules. The structures of both compounds were optimized through a hybrid functional method B3LYP using the 6-31G(d,p) basis set, and various structural parameters were studied. The experimental and theoretical parameters (bond angle and bond length) of the compounds were compared with each other and are in close agreement. The in vitro esterase potential of the synthesized compounds was checked using a spectrophotometric model, while in silico molecular docking studies were performed with AutoDock against two enzymes of the esterase family. The docking studies and the in vitro assessment predicted that such molecules could be used as enzyme inhibitors against the tested enzymes: acetylcholine esterase (AChE) and butyrylcholine esterase (BChE).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available