4.7 Article

Residual stress prediction across dimensions using improved radial basis function based eigenstrain reconstruction

Journal

MECHANICS OF MATERIALS
Volume 185, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.mechmat.2023.104779

Keywords

Eigenstrain; Residual stress; Reconstruction; Radial basis function

Ask authors/readers for more resources

This paper proposes an eigenstrain reconstruction method based on radial basis function (RBF) for predicting residual stress. By using the least squares method, the full-field residual stress can be reconstructed by solving an inverse eigenstrain problem. The novel elliptical radial basis function is used to accurately predict complex residual stresses.
Accurate prediction of residual stress has significant impacts on structural fatigue and long-term performance. Eigenstrain reconstruction emerges as a competitive method for residual stress prediction, due to the appealing engineering adaptability and cost effectiveness. However, traditional eigenstrain methods, by polynomial forms, have difficulties in reconstructing residual stress with complex contour. In such cases, high-order polynomials have to be used to enhance reproduction capability within the domain. Unfortunately, polynomial interpolation with high degree over a set of measurements often encounters unexpected numerical oscillation, known as the Runge's phenomenon. This numerical limitation will misinterpret the residual stress with abrupt change or near the boundary of structures. To tackle these limitations, this paper investigates the residual stress prediction across dimensions. An eigenstrain reconstruction method based on radial basis function (RBF) is proposed in this work. By virtue of least squares method, full-field residual stress can be reproduced by solving an inverse eigenstrain problem through minimizing the residual errors between numerical predictions and experimental measurements. The radial basis function is used as the basis function space to reconstruct the full scale eigenstrain, and then the residual stress in three different dimensions. More importantly, a novel elliptical radial basis function has been proposed for predicting welding residual stress. Thanks to the unique scatter interpolation feature of radial basis function with limited experimental data, the distinctive advantage of the proposed method lies in the excellence of accurately predicting complex residual stresses in one dimension, the whole two dimensions or even three-dimensional components. The eigenstrain reconstruction method based on radial basis function enriches residual stress prediction with complex profiles in two-dimensional and three-dimensional space.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available