4.7 Article

Dynamic response amplification of resonant microelectromechanical structures utilizing multi-mode excitation

Journal

MECHANICAL SYSTEMS AND SIGNAL PROCESSING
Volume 196, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2023.110347

Keywords

-

Ask authors/readers for more resources

This work presents an analytical and experimental study to enhance the dynamic response of the higher-order vibration modes of resonant microstructures. The authors propose a multi-mode excitation technique to enhance the vibration response of higher order modes of an electrostatically actuated micro cantilever beam. The results show that this technique significantly raises the response level above noise and amplifies displacement amplitude, making it promising for future signal processing technologies and high-sensitivity sensors.
This work presents an analytical and experimental study to enhance the dynamic response of the higher-order vibration modes of resonant microstructures. The detection of higher order vibration modes is usually very difficult due to their low amplitude response, which gets buried in noise. Higher input voltages can be used to enhance the response; however, it is highly energy demanding, can result in electronics problems, and may lead to pull-in of the lower participating modes. In this paper, we present a multi-mode excitation (MME) technique to enhance the vi-bration response of the higher order modes of an electrostatically actuated micro cantilever beam. First, we derive the dynamic equations of motion of the micro resonator accounting for two electrostatic excitation sources. Then, we apply the Galerkin method to analyze the dynamics of the system analytically. We investigate the effect of using various dynamic AC combinations on the involved modes to yield optimal conditions of the amplitude magnification. Then, an experimental investigation is conducted based on a micro resonator made of polyimide. The re-sults showed that, compared to the single mode excitation (SME), the MME can significantly raise the level of the response above noise and amplify the displacement amplitude to yield a higher signal-to-noise ratio. The maximum displacement amplitude can be amplified multiple times as determined by the AC loads. Hence, the improved displacement amplitude with the proposed technique makes it promising for future signal processing technologies and for realizing high-sensitivity sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available