4.4 Article

Remarks on bifurcation of an inflated and extended swellable isotropic tube

Journal

MATHEMATICS AND MECHANICS OF SOLIDS
Volume -, Issue -, Pages -

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/10812865231190845

Keywords

Bulging bifurcation; bending bifuctation; prismatic bifurcation; Demiray model

Ask authors/readers for more resources

This article investigates the mechanical behavior of a tubular membrane defined by a strain energy density function. The membrane is subjected to inner pressure, axial stretch, and material volume change. The study reveals that the material volume change strongly influences the occurrence of instability modes.
We consider a tubular membrane whose mechanical behavior is defined by a strain energy density function that combines the neo-Hookean model with the Demiray model. Both, the neo-Hookean and the Demiray models are isotropic material models, which found their application in the modeling of the mechanical behavior of biological soft tissue. This tubular membrane is subjected to an inner pressure, an axial stretch, and a change in the material volume due to swelling or deswelling. The interplay between the cylinder geometry and the loading conditions and different instability modes, namely, bulging bifurcation, bending bifurcation, and prismatic bifurcation, are studied. It is shown that a change in the material volume has a strong effect on the occurrence of these bifurcation modes because a change in the material volume may stabilize the cylinder against a particular bifurcation mode and may trigger another bifurcation mode at the same time. Despite the restriction to isotropic material behavior, this article shows that the material response to pressure, axial stretch, and material volume change is quite complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available