4.8 Article

Strong, tough, fatigue-resistant and 3D-printable hydrogel composites reinforced by aramid nanofibers

Journal

MATERIALS TODAY
Volume 68, Issue -, Pages 84-95

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mattod.2023.07.020

Keywords

Hydrogels; Aramid nanofibers; Composites; Strengthening; 3D printing

Ask authors/readers for more resources

The study successfully synthesized 3D-printable hydrogel composites reinforced by aramid nanofibers. Compared with pure hydrogels, the composites showed higher strength, modulus, and fatigue threshold while maintaining a large elongation-at-break. These improvements were attributed to the hybrid polymer networks in the composites and the effects of chain entanglement, hydrogen bonding, and phase separation.
Three-dimensional (3D)-printable hydrogels exhibit a large elongation-at-break but low strength and modulus and poor fatigue resistance, restricting their applications in artificial tissue. Here, we synthesized 3D-printable hydrogel composites reinforced by aramid nanofibers (ANFs) by introducing ANFs into a hydrogel solution and then applying ultraviolet irradiation to this solution. Compared with those of the pure hydrogel, the strength, fracture energy and fatigue threshold of the 0.3 wt% ANF-hydrogel composite were simultaneously improved by about 10 times, and the modulus was improved by about 30 times, without a significant reduction in the elongation-at-break. The improvements in the modulus, strength and fatigue threshold of the composites were related to the formation of hybrid polymer networks, while the enhanced fracture energy were mainly attributed to chain entanglement, hydrogen bonding and phase separation. Owing to a high 3D-printing resolution and good biocompatibility, these ANF-hydrogel composites have potential applications in flexible electronic devices in organisms. The current study provides a universal and effective strategy for improving the mechanical properties of 3D-printable hydrogels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available