4.6 Article

Effect of EDTA-modified alumina composite abrasive on the CMP performance of sapphire substrate

Journal

MATERIALS CHEMISTRY AND PHYSICS
Volume 312, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2023.128651

Keywords

Chemical mechanical polishing; Alumina composite abrasive; Ethylenediamine tetraacetic acid; Graft modification

Ask authors/readers for more resources

In this study, EDTA-grafted alumina composite abrasives were produced by a two-step process for the CMP of sapphire substrates. Experimental results showed that the modified abrasives exhibited better dispersion properties and significantly improved polishing efficiency, with higher material removal rates and lower surface roughness. The combination of chemical reaction and mechanical action enhanced the CMP performance.
Sapphire is one of the most widely used substrate materials for semiconductor lighting. With the improvement of chemical mechanical polishing (CMP) processing technology for sapphire substrate, mass production, and cost control requires faster polishing efficiency and better surface quality. In CMP, alumina abrasive is widely used for its high polishing rate, but it also has the disadvantages of easy agglomeration and poor polishing quality. Therefore, ethylenediamine tetraacetic acid (EDTA)-grafted alumina composite abrasives were produced by a two-step process for the sapphire substrate CMP. As demonstrated by time of flight secondary ion mass spectrometry and fourier transform infrared spectroscopy, EDTA has been successfully grafted onto the surface of alumina particles. As shown by the scanning electron microscope, particle size distribution, and zeta potential analyses, the modified alumina composite abrasives exhibit superior dispersion properties than pure alumina particles. CMP experiment results show that the material removal rate (MRR) of the alumina composite abrasives can reach up to 2.6 mu m/h, and the surface roughness (Sa) of the sapphire substrate can be reduced to 0.89 nm, which is 53 % higher and 66 % lower than pure alumina, respectively. According to X-ray photoelectron spectroscopy, the chemical etch of modified abrasive particles was strengthened, and the complex reaction occurred throughout the CMP process to generate the C-O-Al structural compound. Meanwhile, the friction coefficient test and contact angle test were combined to create the contact wear model. It shows that the addition of EDTA expands the contact area between the composite abrasives and the surface of substrates, improving the mechanical interaction during CMP. The chemical reaction and mechanical action combine and promote each other to enhance the CMP performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available