4.7 Article

Nanoscale printed tunable specimen geometry enables high-throughput miniaturized fracture testing

Journal

MATERIALS & DESIGN
Volume 234, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2023.112329

Keywords

Two-photon lithography; Push-to-pull devices; Micromechanics; Essential work of fracture; High-throughput testing; Double edge notched tension

Ask authors/readers for more resources

Two-photon lithography enables the design and characterization of novel micromechanical specimens, expanding the possibilities for miniaturized technologies. This study presents a methodology for automated specimen fabrication and testing, and analyzes the influence of parameters on the essential work of fracture. The findings provide a foundation for statistical fracture evaluation in other resin materials and thin film systems.
Two-photon lithography (TPL) enables the design of novel micromechanical specimens, down to sub-micron resolution, thus extending the possibilities for device and material characterisation and pushing the boundaries of a broad range of miniaturized technologies such as optics, analytics, and medicine. Employing a push-topull geometry, incorporating double edge notched tension specimens loaded in mode I, the specimen manufacturing and testing can be automated to a large extent. This allows for the use of large parameter space characterisation methods as the essential work of fracture, with an experimentally simpler to realize compression testing setup. Within this work, a methodology is outlined for automated specimen direct laser writing with a TPL-device and subsequent testing via a nanoindenter. In total, 2100 specimens were manufactured, of which 1997 could be used for evaluation. Estimations for the essential work of fracture of the used photoresist is presented, with regards to influencing parameters such as testing displacement rate and laser writing power. A discussion of its statistical robustness and validity considerations is included. This will act as a basis framework for further statistical fracture evaluation schemes for other resin materials, as well as for probing thin film systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available