4.7 Article

Synthesis and Properties of Bipolar Ladder-Like Polysiloxane with Carbazole and Triphenylphosphine Oxygen Groups

Journal

MACROMOLECULAR RAPID COMMUNICATIONS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/marc.202300233

Keywords

bipolar; high triplet energy; polysiloxanes

Ask authors/readers for more resources

In this study, ladder-like polysiloxanes with high triplet energy were synthesized by introducing double-chain Si-O-Si polymer as the backbone and carbazole and triphenylphosphine oxide as side groups. The ladder-like structures were achieved through controlled polymerization method. The introduction of siloxane improved thermal stability and increased triplet energy level. The measurements showed that the bipolar polymer exhibited high HOMO value and facilitated hole and electron injection.
In this study, a series of ladder-like polysiloxanes are synthesized by introducing double-chain Si-O-Si polymer as the backbone and the carbazole and triphenylphosphine oxide with high triplet energy as side groups. The ladder-like structures of polysiloxanes are achieved through a controlled polymerization method that involves the monomer self-assembly and subsequent surface-restricted solid-phase in situ condensation through freeze-drying. The introduction of siloxane improves thermal stability of the polymers and inhibits the conjugation of the polymers between the side groups, leading to an increase in the triplet energy level. Therefore, all these polymers perform higher triplet energy levels than phosphorescent emitter (FIrpic). The cyclic voltammetry measurements demonstrate that the bipolar polymer exhibits a high highest occupied molecular orbital (HOMO) value of -5.32 eV, which is consistent with the work function of ITO/PEDOT:PSS, consequently facilitating hole injection. Furthermore, the incorporation of triphenylphosphine oxide promotes electron injection. Molecular simulations reveal that the frontier orbital distributions of the bipolar polymer are located on the carbazole and triphenylphosphine groups, respectively, which facilitate the transport of electrons and holes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available