4.5 Review

A New Era of Modeling MOF-Based Membranes: Cooperation of Theory and Data Science

Journal

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mame.202300225

Keywords

gas separation; machine learning; membranes; mixed matrix membranes; MOFs; molecular simulation

Ask authors/readers for more resources

Membrane-based separation can save energy compared to conventional methods, and metal-organic frameworks (MOFs) are considered as next-generation materials for high separation performance and energy efficiency. Efficient modeling approaches are needed to expedite the design and selection of optimal MOF-based membranes. Recent developments in atomic simulations and artificial intelligence methods have opened up a new era of membrane modeling.
Membrane-based separation can offer significant energy savings over conventional separation methods. Given their highly customizable and porous structures, metal-organic frameworks- (MOFs) are considered as next-generation membrane materials that can bring about high separation performance and energy efficiency in various separation applications. Yet, the enormously large number of possible MOF structures necessitates the development and implementation of efficient modeling approaches to expedite the design, discovery, and selection of optimal MOF-based membranes via directing the experimental efforts, time, and resources to the potentially useful membrane materials. With the recent developments in the field of atomic simulations and artificial intelligence methods, a new era of membrane modeling has started. This review focuses on the recent advances made and key strategies used in the modeling of MOF-based membranes and highlight the huge potential of combining atomistic modeling of MOFs with machine learning to explore very large number of MOF membranes and MOF/polymer composite membranes for gas separation. Opportunities and challenges related to the implementation of data-driven approaches to extract useful structure-property relations of MOF-based membranes and to produce design principles for the high-performing MOF-based membranes are discussed. Combining advanced simulation techniques and artificial intelligence methods can help reveal unexplored aspects of metal-organic framework (MOF)-based membranes at an unprecedented speed. This review describes potential benefits of implementing joint simulation-AI driven approach in MOF and MOF/polymer membrane research as well as key advances in modeling techniques that can provide more accurate and more detailed results enabling fine-tuning of subsequent experiments.image

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available