4.7 Article

Spatio-temporal genetic structure and the effects of long-term fishing in two partially sympatric offshore demersal fishes

Journal

MOLECULAR ECOLOGY
Volume 25, Issue 23, Pages 5843-5861

Publisher

WILEY-BLACKWELL
DOI: 10.1111/mec.13890

Keywords

effective population size; fishing pressure; genetic chaotic patchiness; genetic variability; microsatellites; seascape genetics

Funding

  1. Claude Leon Foundation
  2. Stellenbosch University
  3. ECOFISH Project under Benguela Current Commission

Ask authors/readers for more resources

Environmental gradients have been shown to disrupt gene flow in marine species, yet their influence in structuring populations at depth remains poorly understood. The Cape hakes (Merluccius paradoxus and M. capensis) are demersal species co-occurring in the Benguela Current system, where decades of intense fishing resulted in severely depleted stocks in the past. Previous studies identified conflicting mtDNA genetic substructuring patterns and thus contrasting evolutionary trajectories for both species. Using 10 microsatellite loci, the control region of mtDNA and employing a seascape genetics approach, we investigated genetic connectivity and the impact of prolonged exploitation in the two species, which are characterized by different patterns of fishing pressure. Three consecutive years were sampled covering the entire distribution (N = 2100 fishes). Despite large estimated population sizes, both species exhibited low levels of contemporary genetic diversity (0.581 < H-E < 0.692), implying that fishing has had a significant impact on their genetic composition and evolutionary trajectories. Further, for M. paradoxus, significant temporal, but not spatial, divergence points to the presence of genetic chaotic patchiness. In contrast, M. capensis exhibited a clear latitudinal cline in genetic differentiation between Namibia and South Africa (FST = 0.063, P < 0.05), with low (0.2% per generation) estimates of contemporary gene flow. Seascape analyses reveal an association with bathymetry and upwelling events, suggesting that adaptation to local environmental conditions may drive genetic differentiation in M. capensis. Importantly, our results highlight the need for temporal sampling in disentangling the complex factors that impact population divergence in marine fishes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available