4.6 Article

Fast Non-Local Attention network for light super-resolution

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jvcir.2023.103861

Keywords

Single Image Super-Resolution; Non-Local Attention; Light model

Ask authors/readers for more resources

Although traditional methods have achieved significant performance improvement for image super-resolution, their high computational cost limits their real-world application. In this paper, a fast non-local attention network (FNLNET) is proposed for super light image super-resolution, which can capture global representation.
Although convolutional neural network-based methods have achieved significant performance improvement for Single Image Super-Resolution (SISR), their vast computational cost hinders real-world environment application. Thus, the interest in light networks for SISR is rising. Since existing SISR light models mainly focus on extracting fine local features using convolution operation, they have a limitation in that networks hardly capture global information. To capture the long-range dependency, Non-Local (NL) attention and Transformers have been explored in the SISR task. However, they are still suffering from a balancing problem between performance and computational cost. In this paper, we propose Fast Non-Local attention NETwork (FNLNET) for a super light SISR, which can capture the global representation. To acquire global information, we propose The Fast Non-Local Attention (FNLA) module that has low computational complexity while capturing global representation that reflects long-distance relationships between patches. Then, FNLA requires only 16 times lower computational cost than conventional NL networks while improving performance. In addition, we propose a powerful module called Global Self-Intension Mining (GSIM) that fuses the multi-information resources such as local, and global representation. Our FNLNET shows outstanding performance with fewer parameters and computational costs in the experiments on the benchmark datasets against state-of-the-art light SISR models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available