4.4 Article

A framework for relating natural movement to length and quality of life in human and non-human animals

Journal

JOURNAL OF THEORETICAL BIOLOGY
Volume 576, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2023.111649

Keywords

Model; Biomechanics; Complexity; Locomotion; Lifespan

Ask authors/readers for more resources

Natural movement is related to health, but it is difficult to measure. Existing methods cannot capture the full range of natural movement. Comparing movement across different species helps identify common biomechanical and computational principles. Developing a system to quantify movement in freely moving animals in natural environments and relating it to life quality is crucial. This study proposes a theoretical framework based on movement ability and validates it in Drosophila.
Natural movement is clearly related to health, however, it is also highly complex and difficult to measure. Most attempts to measure it focus on functional movements in humans, and while this a valid and popular approach, assays focussed on particular movements cannot capture the range of natural movement that occurs outside them. It is also difficult to use current techniques to compare movement across animal species. Interspecies comparison may be useful for identifying conserved biomechanical and/ or computational principles of movement that could inform human and veterinary medicine, plus several other fields of research. It is therefore important that research develops a system for quantifying movement in freely moving animals in natural environments and relating it to length and quality of life (LQOL). The present text proposes a novel theoretical framework for doing so, based on screening movement ability (MA). MA is calculated from three major variables - Movement Quality, Movement Complexity, and Movement Quantity. These may represent the most important components of movement as it relates to LQOL, and offer insight into how and why differences in the relationship between movement and LQOL occur. A constrained version of the framework is validated in Drosophila, which suggests that MA may indeed represent a useful new paradigm for understanding the relationship between movement and length and quality of life.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available