4.7 Article

Effect of low doses of actinomycin D on neuroblastoma cell lines

Journal

MOLECULAR CANCER
Volume 15, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/s12943-015-0489-8

Keywords

Actinomycin D; Neuroblastoma; Apoptosis; Therapy; SAHA

Funding

  1. Universitat de Barcelona
  2. Ministerio de Educacion Cultura y Deporte
  3. Contratos de Investigador Senior del Instituto de Salud Carlos III [IIS12/00002]
  4. Direccion General de Investigacion Cientifica y Tecnica [BFU2009-09933, BFU2012-38867, SAF2011-2496]
  5. Red Tematica de Investigacion Cooperativa en Cancer [RD12/0036/0049, RD12/0036/0029, RD12/0036/0057]
  6. Marie Curie Actions [PCIG10-GA-2011-304160]
  7. National Cancer Institute [R01-CA158768]
  8. Asociacion Espanola contra el Cancer [GCB14-2035-AECC]
  9. FEDER funds

Ask authors/readers for more resources

Background: Neuroblastoma is a malignant embryonal tumor occurring in young children, consisting of undifferentiated neuroectodermal cells derived from the neural crest. Current therapies for high-risk neuroblastoma are insufficient, resulting in high mortality rates and high incidence of relapse. With the intent to find new therapies for neuroblastomas, we investigated the efficacy of low-doses of actinomycin D, which at low concentrations preferentially inhibit RNA polymerase I-dependent rRNA trasncription and therefore, ribosome biogenesis. Methods: Neuroblastoma cell lines with different p53 genetic background were employed to determine the response on cell viability and apoptosis of low-dose of actinomycin D. Subcutaneously-implanted SK-N-JD derived neuroblastoma tumors were used to assess the effect of low-doses of actinomycin D on tumor formation. Results: Low-dose actinomycin D treatment causes a reduction of cell viability in neuroblastoma cell lines and that this effect is stronger in cells that are wild-type for p53. MYCN overexpression contributes to enhance this effect, confirming the importance of this oncogene in ribosome biogenesis. In the wild-type SK-N-JD cell line, apoptosis was the major mechanism responsible for the reduction in viability and we demonstrate that treatment with the MDM2 inhibitor Nutlin-3, had a similar effect to that of actinomycin D. Apoptosis was also detected in p53(-/-) deficient LA1-55n cells treated with actinomycin D, however, only a small recovery of cell viability was found when apoptosis was inhibited by a pan-caspase inhibitor, suggesting that the treatment could activate an apoptosis-independent cell death pathway in these cells. We also determined whether actinomycin D could increase the efficacy of the histone deacetylase inhibitor, SAHA, which is in being used in neuroblastoma clinical trials. We show that actinomycin D synergizes with SAHA in neuroblastoma cell lines. Moreover, on subcutaneously-implanted neuroblastoma tumors derived from SK-N-JD cells, actinomycin D led to tumor regression, an effect enhanced in combination with SAHA. Conclusions: The results presented in this work demonstrate that actinomycin D, at low concentrations, inhibits proliferation and induces cell death in vitro, as well as tumor regression in vivo. From this study, we propose that use of ribosome biogenesis inhibitors should be clinically considered as a potential therapy to treat neuroblastomas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available