4.8 Article

A Chimeric NiFe Hydrogenase Heterodimer to Assess the Role of the Electron Transfer Chain in Tuning the Enzyme's Catalytic Bias and Oxygen Tolerance

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 145, Issue 36, Pages 20021-20030

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.3c06895

Keywords

-

Ask authors/readers for more resources

The observation that some homologous enzymes have the same active site but very different catalytic properties demonstrates the importance of long-range effects in enzyme catalysis. In this study, the catalytic bias and sensitivity of hydrogenase 1 (Hyd 1) were found to be determined by the catalytic subunit rather than the electron transfer chain, and the proximal cluster was confirmed to play a role in the enzyme's resistance to long-term exposure to O-2. This research provides insights into the structure-function relationships of hydrogenases and offers possibilities for engineering useful hydrogenases with desired properties.
The observation that some homologous enzymes have the same active site but very different catalytic properties demonstrates the importance of long-range effects in enzyme catalysis, but these effects are often difficult to rationalize. The NiFe hydrogenases 1 and 2 (Hyd 1 and Hyd 2) from E. coli both consist of a large catalytic subunit that embeds the same dinuclear active site and a small electron-transfer subunit with a chain of three FeS clusters. Hyd 1 is mostly active in H2 oxidation and resistant to inhibitors, whereas Hyd 2 also catalyzes H-2 production and is strongly inhibited by O-2 and CO. Based on structural and site-directed mutagenesis data, it is currently believed that the catalytic bias and tolerance to O-2 of Hyd 1 are defined by the distal and proximal FeS clusters, respectively. To test these hypotheses, we produced and characterized a hybrid enzyme made of the catalytic subunit of Hyd 1 and the electron transfer subunit of Hyd 2. We conclude that catalytic bias and sensitivity to CO are set by the catalytic subunit rather than by the electron transfer chain. We confirm the importance of the proximal cluster in making the enzyme Hyd 1 resist long-term exposure to O-2, but we show that other structural determinants, in both subunits, contribute to O-2 tolerance. A similar strategy based on the design of chimeric heterodimers could be used in the future to elucidate various structure-function relationships in hydrogenases and other multimeric metalloenzymes and to engineer useful hydrogenases that combine the desirable properties of distinct, homologous enzymes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available