4.8 Article

A Hairpin Motif in the Amyloid-& beta; Peptide Is Important for Formation of Disease-Related Oligomers

Journal

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.3c03980

Keywords

-

Ask authors/readers for more resources

The formation of Aβ oligomers is dependent on the presence of a specific β-hairpin motif in the peptide sequence. Oligomers initially grow spherically but start to form extended linear aggregates at larger oligomeric states. The population of extended oligomers can be increased by introducing an intramolecular disulfide bond, while truncating a β-strand-forming segment decreases the oligomer population and removes the formation of extended oligomers.
The amyloid-& beta;(A & beta;) peptide is associated with the developmentof Alzheimer's disease and is known to form highly neurotoxicprefibrillar oligomeric aggregates, which are difficult to study dueto their transient, low-abundance, and heterogeneous nature. To obtainhigh-resolution information about oligomer structure and dynamicsas well as relative populations of assembly states, we here employa combination of native ion mobility mass spectrometry and moleculardynamics simulations. We find that the formation of A & beta; oligomersis dependent on the presence of a specific & beta;-hairpin motif inthe peptide sequence. Oligomers initially grow spherically but startto form extended linear aggregates at oligomeric states larger thanthose of the tetramer. The population of the extended oligomers couldbe notably increased by introducing an intramolecular disulfide bond,which prearranges the peptide in the hairpin conformation, therebypromoting oligomeric structures but preventing conversion into maturefibrils. Conversely, truncating one of the & beta;-strand-formingsegments of A & beta; decreased the hairpin propensity of the peptideand thus decreased the oligomer population, removed the formationof extended oligomers entirely, and decreased the aggregation propensityof the peptide. We thus propose that the observed extended oligomerstate is related to the formation of an antiparallel sheet state,which then nucleates into the amyloid state. These studies provideincreased mechanistic understanding of the earliest steps in A & beta;aggregation and suggest that inhibition of A & beta; folding into thehairpin conformation could be a viable strategy for reducing the amountof toxic oligomers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available