4.7 Article

Gamma-ray irradiation effect on microstructure and physical performances of porous silica

Journal

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
Volume 106, Issue 11, Pages 6555-6564

Publisher

WILEY
DOI: 10.1111/jace.19323

Keywords

amorphous porous silica; elastic constants; gamma irradiation; molecular dynamics

Ask authors/readers for more resources

In this paper, the effect of gamma irradiation on the microstructure and physical performances of porous silica is investigated. The study shows that gamma-ray irradiation modifies the microstructure of porous silica and induces defects. The mechanical, thermal, and optical performances of porous silica are all degraded by gamma-ray irradiation. This work is valuable for understanding the degradation mechanism of silicate materials under gamma radiation and developing gamma-ray irradiation protection technology.
In this paper, the gamma irradiation effect on the microstructure and physical performances of porous silica, including mechanical, thermal, and optical performances, are systematically investigated by using molecular dynamics and density-functional theory-based methods. The study of bond angle distribution, pair distribution function, coordination number distribution, and average ring size distribution show that, after gamma-ray irradiation, the microstructure of porous silica is obviously modified. The tight packing of SiO2 tetrahedrons in the porous silica network is broken by gamma-ray irradiation. Defects of three-coordinated Si and non-bridging oxygen are induced by gamma-ray irradiation. Moreover, we find that the defects concentrations rapidly grow as gamma-ray dose increases. The mechanical, thermal, and optical performances of porous silica are all seriously degenerated by gamma-ray irradiation. Our results show that, for mechanical performance, Young's modulus, Bulk modulus, and Shear modulus first decrease and then keep stable as gamma-ray dose increases, but the change of Poisson's ratio is slight. For thermal performance, the thermal conductivity decreases exponentially as gamma-ray dose increases. For optical performance, light absorption coefficients increase exponentially and light transmittance drops as gamma-ray dose increases in the working range (photon energy range around 3.5 eV) of inertial confinement fusion. Present work is expected to be valuable for studying the degradation mechanism of silicate materials under gamma radiation and developing gamma-ray irradiation protection technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available