4.6 Article

Synthesis of monodisperse highly nitrogen-rich porous carbon microspheres for CO2 adsorption

Journal

Publisher

SPRINGER
DOI: 10.1007/s10971-023-06165-z

Keywords

Monodisperse; Nitrogen-rich; Carbon microspheres; CO2 adsorption

Ask authors/readers for more resources

The nitrogen-rich carbon microspheres were synthesized by hydrothermal synthesis, carbonization, and activation using resorcinol formaldehyde and tetraethylenepentamine (TEPA) as precursors. The nitrogen content and microstructure could be adjusted by varying the TEPA addition. The activated carbon microspheres exhibited high CO2 adsorption due to the enhancement of microstructure and nitrogen doping. Introducing polyvinylpyrrolidone (PVP) as a stabilizer improved the monodispersity and CO2 adsorption performance of the carbon microspheres.
The nitrogen-rich carbon microspheres were prepared by the one-pot hydrothermal synthesis in the presence of resorcinol formaldehyde as the carbon precursor and tetraethylenepentamine (TEPA) as nitrogen precursor as well as the base catalyst, followed by carbonization and activation. Their nitrogen content and microstructure of the nitrogen-rich carbon microspheres could be adjusted by varying the addition of TEPA. The significant enhancement of the microstructure and the nitrogen doping leads to high CO2 adsorption in the activated carbon microspheres. The high nitrogen content of activated sample AMPS-4 was 5.61%, and the large specific surface area and micropore volume were 786.5 m(2)/g and 0.28 cm(3)/g, respectively. The activated sample AMCS-4 had the highest CO2 adsorption reaching 5.52 mmol/g and 2.97 mmol/g at 0 and 25 degrees C, respectively. Compared with EDA-prepared carbon microspheres AMCS-4E, TEPA-prepared carbon microspheres AMCS-4 have stabler chemical adsorption to CO2 due to their higher nitrogen content, which is in corresponds to the higher adsorption heat. The introduction of polyvinylpyrrolidone (PVP) into the system as a stabilizer not only improved the monodispersity of carbon microspheres but also improved the adsorption performance of CO2 by increasing the micropore volume and decreasing the micropore size of the microspheres. The CO2 adsorption of the PVP-assisted prepared sample AMCS-2-P1 reached 4.48 mmol/g and 2.95 mmol/g at 0 degrees C and 25 degrees C respectively, which is 0.72 mmol/g and 0.25 mmol/g higher than that of AMCS-2. The carbon microspheres have high CO2 dynamic adsorption capacity, excellent selective adsorption, and good cyclic stability. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available