4.4 Article

Tau antagonizes end-binding protein tracking at microtubule ends through a phosphorylationdependent mechanism

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 27, Issue 19, Pages 2924-2934

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E16-01-0029

Keywords

-

Categories

Funding

  1. Institut National pour la Sante et la Recherche Medicale
  2. Centre National de la Recherche Scientifique joint ATIP-Avenir program
  3. Agence National pour la Recherche (Program MALZ) [ANR-2011-MALZ-001-02]
  4. Universite Joseph Fourier
  5. Agence National pour la Recherche (Program MALZ)
  6. Ministere de l'Enseignement et de la Recherche
  7. France Alzheimer (AAP SM)

Ask authors/readers for more resources

Proper regulation of microtubule dynamics is essential for cell functions and involves various microtubule-associated proteins (MAPs). Among them, end-binding proteins (EBs) accumulate at microtubule plus ends, whereas structural MAPs bind along the microtubule lattice. Recent data indicate that the structural MAP tau modulates EB subcellular localization in neurons. However, the molecular determinants of EB/tau interaction remain unknown, as is the effect of this interplay on microtubule dynamics. Here we investigate the mechanisms governing EB/tau interaction in cell-free systems and cellular models. We find that tau inhibits EB tracking at microtubule ends. Tau and EBs form a complex via the C-terminal region of EBs and the microtubule-binding sites of tau. These two domains are required for the inhibitory activity of tau on EB localization to microtubule ends. Moreover, the phosphomimetic mutation S262E within tau microtubule-binding sites impairs EB/tau interaction and prevents the inhibitory effect of tau on EB comets. We further show that microtubule dynamic parameters vary, depending on the combined activities of EBs and tau proteins. Overall our results demonstrate that tau directly antagonizes EB function through a phosphorylation-dependent mechanism. This study highlights a novel role for tau in EB regulation, which might be impaired in neurodegenerative disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available