4.8 Article

Indispensability of Horizontally Transferred Genes and Its Impact on Bacterial Genome Streamlining

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 33, Issue 5, Pages 1257-1269

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msw009

Keywords

genome reduction; adaptive genome streamlining; horizontal gene transfer; genome engineering; genome complexity

Funding

  1. Lendulet program of the Hungarian Academy of Sciences
  2. Wellcome Trust
  3. European Research Council
  4. Hungarian Scientific Research Fund [PD, K100959]
  5. Hungarian Academy of Sciences Postdoctoral Fellowship Programme [Postdoc2014-85, SZ-039/2013]
  6. [TAMOP-4.2.2.A-11/1/KONV-2012-0035]

Ask authors/readers for more resources

Why are certain bacterial genomes so small and compact? The adaptive genome streamlining hypothesis posits that selection acts to reduce genome size because of themetabolic burden of replicating DNA. To reveal the impact of genome streamlining on cellular traits, we reduced the Escherichia coli genome by up to 20% by deleting regions which have been repeatedly subjects of horizontal transfer in nature. Unexpectedly, horizontally transferred genes not only confer utilization of specific nutrients and elevate tolerance to stresses, but also allow efficient usage of resources to build new cells, and hence influence fitness in routine and stressful environments alike. Genome reduction affected fitness not only by gene loss, but also by induction of a general stress response. Finally, we failed to find evidence that the advantage of smaller genomes would be due to a reduced metabolic burden of replicating DNA or a link with smaller cell size. We conclude that as the potential energetic benefit gained by deletion of short genomic segments is vanishingly small compared with the deleterious side effects of these deletions, selection for reduced DNA synthesis costs is unlikely to shape the evolution of small genomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available