4.5 Article

Field-free spin-orbit torque switching in interlayer exchange coupled Co/Ta/CoTb

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 35, Issue 41, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-648X/ace4b1

Keywords

spin-orbit torque; field-free switching; asymmetric domain wall motion; multistate synaptic plasticity

Ask authors/readers for more resources

This study investigates a T-type field-free spin-orbit torque device with an in-plane magnetic layer coupled to a perpendicular magnetic layer via a non-magnetic spacer. The device utilizes a Co/Ta/CoTb structure and demonstrates deterministic current-induced magnetization switching and asymmetric domain wall motion. The functionality of multistate synaptic plasticity is also demonstrated, making it suitable for spintronic memory and neuromorphic computing applications.
This study investigates a T-type field-free spin-orbit torque device with an in-plane magnetic layer coupled to a perpendicular magnetic layer via a non-magnetic spacer. The device utilizes a Co/Ta/CoTb structure, in which the in-plane Co layer and the perpendicular CoTb layer are ferromagnetically (FM) coupled through the Ta spacer. 'T-type' refers to the magnetization arrangement in the FM/spacer/FIM structure, where the magnetization in FM is in-plane, while in FIM, it is out-of-plane. This configuration forms a T-shaped arrangement for the magnetization of the two magnetic layers. Additionally, 'interlayer exchange coupling (IEC)' denotes the interaction between the two magnetic layers, which is achieved by adjusting the material and thickness of the spacer. Our results show that an in-plane effective field from the IEC enables deterministic current-induced magnetization switching of the CoTb layer. The field-driven and the current-driven asymmetric domain wall motion are observed and characterized by magneto-optic Kerr effect measurements. The functionality of multistate synaptic plasticity is demonstrated by understanding the relationship between the anomalous Hall resistance and the applied current pulses, indicating the potential for the device in spintronic memory and neuromorphic computing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available