4.6 Article

A First-Principles Approach to Modeling Interfacial Capacitance in Graphene-Based Electrodes

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 127, Issue 28, Pages 13987-13995

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.3c03180

Keywords

-

Ask authors/readers for more resources

We present a computational model based on density functional theory (DFT) calculations to calculate the interfacial capacitance of low-dimensional materials in contact with a bulk substrate. The model incorporates key electrostatic and quantum mechanical components and introduces a material-agnostic formalism based on classical electromagnetic theory. Case studies on monolayer and bilayer graphene adsorbed on a silica substrate show that the predicted electrostatic capacitance of the interfaces is field-independent and aligns well with experimental measurements, offering a better understanding of the electrochemical behavior of nanoscopic interfaces.
We present a first-principles computationalmodel tocalculatethe interfacial capacitance of low-dimensional materials in contactwith a bulk substrate. The model is based on density functional theory(DFT) calculations and incorporates key electrostatic and quantummechanical components of electric field shielding in a nanoscopicinterface. A material-agnostic formalism based on classical electromagnetictheory is introduced that allows the quantification of the electrostaticinterfacial capacitance. The case studies investigated are the interfacesof monolayer graphene and bilayer graphene adsorbed on a silica substrate.Our model predicts the electrostatic capacitance in the studied interfacesto be field-independent, resulting in a reduction of the slope ofthe quantum capacitance with a shift in its minimum, aligning accuratelyand consistently with experimental measurements for both monolayerand bilayer graphene. The model provides an improved representationof the interfacial capacitance of low-dimensional materials, offeringa better understanding of the electrochemical behavior of nanoscopicinterfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available