4.5 Article

The interacting effect of prolonged darkness and temperature on photophysiological characteristics of three Antarctic phytoplankton species

Journal

JOURNAL OF PHYCOLOGY
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1111/jpy.13374

Keywords

algae; Antarctica; Chaetoceros simplex; climate change; Geminigera cryophila; light; photoacclimation; photosynthesis Phaeocystis antarctica

Ask authors/readers for more resources

The photophysiological characteristics of three species of Southern Ocean phytoplankton were studied during 7 weeks of darkness and subsequent recovery. Different species showed varying levels of decline in photosynthetic fitness during darkness, with Phaeocystis antarctica experiencing the strongest decline. The diatom C. simplex showed the strongest capacity for photosynthesis and growth during darkness. The maintenance of photosynthetic fitness during darkness was temperature dependent, with higher temperatures leading to a stronger decline.
Photophysiological characteristics of the Southern Ocean phytoplankton species Phaeocystis antarctica, Geminigera cryophila, and Chaetoceros simplex were assessed during 7 weeks of darkness and subsequent recovery after darkness at 4 and 7?. Chlorophyll a fluorescence and maximum quantum efficiency of PSII decreased during long darkness in a species-specific manner, whereas chlorophyll a concentration remained mostly unchanged. Phaeocystis antarctica showed the strongest decline in photosynthetic fitness during darkness, which coincided with a reduced capacity to recover after darkness, suggesting a loss of functional photosystem II (PSII) reaction centers. The diatom C. simplex at 4? showed the strongest capacity to resume photosynthesis and active growth during 7 weeks of darkness. In all species, the maintenance of photosynthetic fitness during darkness was clearly temperature dependent as shown by the stronger decline of photosynthetic fitness at 7? compared to 4?. Although we lack direct evidence for this, we suggest that temperature-enhanced respiration rates cause stronger depletion of energy reserves that subsequently interferes with the maintenance of photosynthetic fitness during long darkness. Therefore, the current low temperatures in the coastal Southern Ocean may aid the maintenance of photosynthetic fitness during the austral winter. Further experiments should examine to what extent the species-specific differences in dark survival are relevant for future temperature scenarios for the coastal Southern Ocean.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available