4.5 Article

Polydatin attenuates AGEs-induced upregulation of fibronectin and ICAM-1 in rat glomerular mesangial cells and db/db diabetic mice kidneys by inhibiting the activation of the SphK1-S1P signaling pathway

Journal

MOLECULAR AND CELLULAR ENDOCRINOLOGY
Volume 427, Issue C, Pages 45-56

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.mce.2016.03.003

Keywords

Diabetic nephropathy; Advanced glycation-end products; Polydatin; Sphingosine kinase 1; Fibronectin; Intercellular adhesion molecule-1

Funding

  1. National Natural Science Foundation of China [81373457, 81573477]
  2. Major Science and Technology Project of China [2014ZX09301307-008]
  3. Science and Technology Program of Guangdong province, PR China [2014A020210007, 2012B050300017]
  4. Doctoral Fund Project of the Ministry of Education of China [20130171110097]

Ask authors/readers for more resources

We previously demonstrated that activation of sphingosine kinase 1 (SphK1)- sphingosine 1- phosphate (S1P) signaling pathway by high glucose (HG) plays a pivotal role in increasing the expression of fibronectin (FN), an important fibrotic component, by promoting the DNA-binding activity of transcription factor activator protein 1 (AP-1) in glomerular mesangial cells (GMCs) under diabetic conditions. As a multi-target anti-oxidative drug, polydatin (PD) has been shown to have renoprotective effects on experimental diabetes. However, whether PD could resist diabetic nephropathy (DN) by regulating SphK1-S1P signaling pathway needs further investigation. Here, we found that PD significantly reversed the upregulated FN and ICAM-1 expression in GMCs exposed to AGEs. Simultaneously, PD dose dependently inhibited SphK1 levels at the protein expression and kinase activity and attenuated SIP production under AGEs treatment conditions. In addition, PD reduced SphK activity in GMCs transfected with wild-type SphK(WT) plasmid and significantly suppressed SphK1-mediated increase of FN and ICAM-1 levels under normal conditions. Furthermore, we found that the AGEs-induced upregulation of phosphorylation of c-Jun at Ser63 and Ser73 and c-Fos at Ser32, DNA-binding activity and transcriptional activity of AP-1 were blocked by PD. In comparison with db/db model group, PD treatment suppressed SphK1 levels (mRNA, protein expression, and activity) and SIP production, reversed the upregulation of FN, ICAM-1, c-Jun, and c-Fos in the kidney tissues of diabetic mice, and finally ameliorated renal injury in db/db mice. These findings suggested that the downregulation of SphK1-S1P signaling pathway is probably a novel mechanism by which PD suppressed AGEs-induced FN and ICAM-1 expression and improved renal dysfunction of diabetic models. (C) 2016 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available