4.6 Article

Expression and characterization of the SOS1 Arabidopsis salt tolerance protein

Journal

MOLECULAR AND CELLULAR BIOCHEMISTRY
Volume 415, Issue 1-2, Pages 133-143

Publisher

SPRINGER
DOI: 10.1007/s11010-016-2685-2

Keywords

Arabidopsis thaliana; Membrane protein; Na+/H+ antiporter; Salt tolerance; Sod2; SOS1

Categories

Funding

  1. NSERC

Ask authors/readers for more resources

SOS1 is the plasma membrane Na+/H+ antiporter of Arabidopsis thaliana. It is responsible for the removal of intracellular sodium in exchange for an extracellular proton. SOS1 is composed of 1146 amino acids. Approximately 450 make the membrane domain, while the protein contains and a very large regulatory cytosolic domain of about 696 amino acids. Schizosaccharomyces pombe contains the salt tolerance Na+/H+ antiporter proteins sod2. We examined the ability of SOS1 to rescue salt tolerance in S. pombe with a knockout of the sod2 gene (sod2::ura4). In addition, we characterized the importance of the regulatory tail of SOS1, in expression of the protein in S. pombe. We expressed full-length SOS1 and SOS1 shortened at the C-terminus and ending at amino acids 766 (medium) and 481 (short). The short version of SOS1 conveyed salt tolerance to sod2::ura4 yeast and Western blotting revealed that the protein was present. The protein was also targeted to the plasma membrane. The medium and full-length SOS1 protein were partially degraded and were not as well expressed as the short version of SOS1. The SOS1 short protein was also able to reduce Na+ content in S. pombe. The full-length SOS1 dimerized and depended on the presence of the cytosolic tail. An analysis of SOS1 predicted a topology of 13 transmembrane segments, distinct from E. coli NhaA but similar to the Na+/H+ exchangers Methanocaldococcus jannaschii NhaP1 and Thermus thermophile NapA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available