4.3 Review

Local immunotherapy of glioblastoma: A comprehensive review of the concept

Journal

JOURNAL OF NEUROIMMUNOLOGY
Volume 381, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jneuroim.2023.578146

Keywords

Glioblastoma; Immunotherapy; Management; Local delivery

Ask authors/readers for more resources

Despite poor prognosis of GBM, immunotherapy, especially CAR T cells, shows promising potential in improving outcomes. Local immunotherapy targeting tumor microenvironment, such as TLS incorporation into a scaffold, can reduce CAR T cell exhaustion and enhance the immune response. Combining TLS, STING agonists, GSCs, and CAR T cells in an implantable scaffold offers a multifaceted approach for GBM treatment.
Despite advancements in standard treatments, the prognosis of Glioblastoma (GBM) remains poor, prompting research for novel therapies. Immunotherapy is a promising treatment option for GBM, and many immuno-therapeutic agents are currently under investigation. Chimeric antigen receptor (CAR) T cells are rapidly evolving in immunotherapy of GBM with many clinical trials showing efficacy of CAR T cells exerting anti-tumor activity following recognition of tumor-associated antigens (TAAs). Exhaustion in CAR T cells can reduce their capacity for long-term persistence and anti-tumor action. Local immunotherapy, which targets the tumor microenvironment and creates a more hospitable immunological environment for CAR T cells, has the potential to reduce CAR T cell exhaustion and increase immunity. Tertiary lymphoid structures (TLS) are ectopic lymphoid-like formations that can develop within the tumor microenvironment or in other non-lymphoid tissues. As a comprehensive local immunotherapy tool, the incorporation of TLS into an implanted biodegradable scaffold has amazing immunotherapeutic potential. The immune response to GBM can be improved even further by strategically inserting a stimulator of interferon genes (STING) agonist into the scaffold. Additionally, the scaffold's addition of glioma stem cells (GSC), which immunotherapeutic approaches may use to target, enhances the removal of cancer cells from their source. Furthermore, it has been demonstrated that GSCs have an impact on TLS formation, which helps to create a favorable tumor microenvironment. Herein, we overview local de-livery of a highly specific tandem AND-gate CAR T cell along with above mentioned components. A multifaceted approach that successfully engages the immune system to mount an efficient targeted immune response against GBM is provided by the integration of CAR T cells, TLS, STING agonists, and GSCs within an implantable biodegradable scaffold. This approach offers a promising therapeutic approach for patients with GBM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available