4.4 Article

Tweaking the conjugation effects on a pair of new triazene compounds by targeted deprotonation: a spectroscopic and theoretical overview

Journal

JOURNAL OF MOLECULAR MODELING
Volume 29, Issue 9, Pages -

Publisher

SPRINGER
DOI: 10.1007/s00894-023-05685-3

Keywords

Triazene; Triazenide; DFT calculations; FT-IR; STEOM; UV-Vis

Ask authors/readers for more resources

For the first time, two new isomeric triazene compounds with different substituents were investigated as potential tridentate ligands for metallic cations. Extensive experimental and computational analyses revealed that these compounds are stable and can form stable complexes similar to vitamin B12.
ContextTriazene compounds (-NNN(H)-) exhibit versatility in biological, physical, and chemical applications. In their anionic form (-NNN-)((-)), they can act as coordinating sites for metals, forming metallic complexes. In this study, two new isomeric triazene compounds with meta- and para-substituents in their neutral and anionic forms were investigated. A combination of detailed experimental spectroscopic characterization and computational chemistry analyses were employed. The new compounds, 1-(2-benzamide)-3-(3-nitrophenyl) triazene (m-TZN) and 1-(2-benzamide)-3-(4-nitrophenyl) triazene (p-TZN), were compared to 1,3-diphenyltriazene (dph-TZN) to understand the effects of functionalization and targeted triazene deprotonation. The anionic forms are stable, and our investigation suggests that these new compounds are suitable tridentate ligands that can act as chelating agents for metallic cations in stable complexes, similar to those found in vitamin B12.Methods The absorption, vibrational, and electronic properties of the newly synthesized triazene compounds were extensively characterized using FT-IR/FT-Raman and UV-Vis spectroscopy. Their distinct molecular properties, intramolecular hydrogen bond effects, stability, and electronic transitions were investigated using the ORCA software. These analyses involved DFT and TD-DFT calculations at the ?B97X-D3/Def2-TZVP level of theory with THF CPCM implicit solvation to determine the molecular topology and electronic structure. The advanced STEOM-DLPNO-CCSD method for excited states was employed, enabling an in-depth analysis of ground and excited-state chemistry, accounting for precise electronic correlation and solvation effects. Explicit THF solvation was tested on the full TD-DFT ?B97X-D3/Def2-TZVP level and using ONIOM on the STEOM calculation. Reactivity was studied using Fukui functions, and action as chelating agents was investigated using GFN-xTB2 and DFT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available