4.7 Article

Concatenated Forward Error Correction With KP4 and Single Parity Check Codes

Journal

JOURNAL OF LIGHTWAVE TECHNOLOGY
Volume 41, Issue 17, Pages 5641-5652

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JLT.2023.3269325

Keywords

AWGN; concatenated codes; error probability; Ethernet; forward error correction; parity check codes; Reed-Solomon codes

Ask authors/readers for more resources

This article studies concatenated forward error correction using an outer KP4 Reed-Solomon code with hard-decision decoding and inner single parity check (SPC) codes with Chase/Wagner soft-decision decoding. Analytical expressions are derived for the end-to-end frame and bit error rates for transmission over additive white Gaussian noise channels with binary phase-shift keying (BPSK) and quaternary amplitude shift keying (4-ASK), as well as with symbol interleavers and quantized channel outputs. The BPSK error rates are compared to those of two other inner codes: a two-dimensional product code with SPC component codes and an extended Hamming code. Simulation results for unit-memory inter-symbol interference channels and 4-ASK are also presented. The results show that the coding schemes achieve similar error rates, but SPC codes have the lowest complexity and permit flexible rate adaptation.
Concatenated forward error correction is studied using an outer KP4 Reed-Solomon code with hard-decision decoding and inner single parity check (SPC) codes with Chase/Wagner soft-decision decoding. Analytical expressions are derived for the end-to-end frame and bit error rates for transmission over additive white Gaussian noise channels with binary phase-shift keying (BPSK) and quaternary amplitude shift keying (4-ASK), as well as with symbol interleavers and quantized channel outputs. The BPSK error rates are compared to those of two other inner codes: a two-dimensional product code with SPC component codes and an extended Hamming code. Simulation results for unit-memory inter-symbol interference channels and 4-ASK are also presented. The results show that the coding schemes achieve similar error rates, but SPC codes have the lowest complexity and permit flexible rate adaptation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available