4.7 Article

The effect of synthesis conditions on the in situ grown MIL-100(Fe)-chitosan beads: Interplay between structural properties and arsenic adsorption

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 463, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.132893

Keywords

Metal-organic frameworks; Aerogels; Hybrid materials; And crystallinity

Ask authors/readers for more resources

Efficient and environmentally friendly porous hybrid adsorbent beads have been developed for the removal of arsenic from drinking water. The structural tuning of the adsorbents has been shown to have a significant impact on their adsorption performance, with high crystallinity leading to increased adsorption capacity and selectivity towards As5+.
Efficient sequestration of arsenic from drinking water is a global need. Herein we report eco-friendly porous hybrid adsorbent beads for removal of arsenic, through in situ synthesis of MIL-100(Fe) in the chitosan solvogel. To understand the structural vs. performance correlation, series of hybrid adsorbents were synthesized by modulating synthesis conditions like temperature, crystallization time, and concentration. Adsorbents were investigated using PXRD, FT-IR, SEM, and ICP-OES. Intriguing correlation between crystallinity and adsorption performance was observed as low and high crystalline MIL-100(Fe)-chitosan (ChitFe5 and ChitFe7, respectively) exhibited exceptional adsorption towards As5+ by removing it from water with 99% efficiency, whereas for As3+ species removal of about 85% was afforded. Adsorption isotherms indicated that increase in crystallinity (ChitFe5 -> ChitFe7), adsorption capacities of As5+ and As3+ increased from 23.2 to 64.5, and from 28.1 to 35.3 mg/g, respectively. Selectivity tests of the adsorbents towards As5+ and As3+ over competitive anions in the equimolar competitive systems having nitrates, sulfates, and carbonates demonstrated that the performance of the absorbents was fully maintained, relative to the control system. Through this study a highly selective and efficient adsorbent for arsenic species is designed and a clear insight into the structural tuning and its effect on adsorption performance is provided.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available